Four-terminal reducibility and projective-planar wye-delta-wye-reducible graphs

نویسندگان

  • Dan Archdeacon
  • Charles J. Colbourn
  • Isidoro Gitler
  • J. Scott Provan
چکیده

A graph is Y Y-reducible if it can be reduced to a vertex by a sequence of series-parallel reductions and Y Y-transformations. Terminals are distinguished vertices which cannot be deleted by reductions and transformations. In this paper we show that four-terminal planar graphs are Y Y-reducible when at least three of the vertices lie on the same face. Using this result we characterize Y Y-reducible projective-planar graphs. We also consider terminals in projective-planar graphs, and establish that graphs of crossing-number one are Y Y-reducible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On terminal delta-wye reducibility of planar graphs

A graph is terminal ∆ − Y -reducible if, it can be reduced to a distinguished set of terminal vertices by a sequence of series-parallel reductions and ∆−Y -transformations. Terminal vertices (o terminals for short) cannot be deleted by reductions and transformations. Reducibility of terminal graphs is very difficult and in general not possible for graphs with more than three terminals (even pla...

متن کامل

More Forbidden Minors for Wye-Delta-Wye Reducibility

A graph is Y ∆Y reducible if it can be reduced to isolated vertices by a sequence of series-parallel reductions and Y ∆Y transformations. It is still an open problem to characterize Y ∆Y reducible graphs in terms of a finite set of forbidden minors. We obtain a characterization of such forbidden minors that can be written as clique k-sums for k = 1, 2, 3. As a result we show constructively that...

متن کامل

The Delta - Wye Approximation Procedurefor Two - terminal

The Delta-Wye Approximation Procedure (DWAP) is a procedure for estimating the two-terminal reliability of an undirected planar network G = (V; E) by reducing the network to a single edge via a sequence of local graph transformations. It combines the probability equations of Lehman | whose solutions provide bounds and approximations of two-terminal reliability for the individual transformations...

متن کامل

Index of talks

Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bojan Mohar, Rooted K2,4-minors and wye-delta reducibility 11 János Pach, The importance of being simple . . . . . . . 11 Paul Seymour, . . . . . . . . . . . . . . . . . . . . . . . . 12 R. Ravi, Improved Approximations for Graph-TSP in Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . 12 Bruce Reed, The Structure and...

متن کامل

Time-dependent shortest paths in bounded treewidth graphs

We present a proof that the number of breakpoints in the arrival function between two terminals in graphs of treewidth $w$ is $n^{O(\log^2 w)}$ when the edge arrival functions are piecewise linear. This is an improvement on the bound of $n^{\Theta(\log n)}$ by Foschini, Hershberger, and Suri for graphs without any bound on treewidth. We provide an algorithm for calculating this arrival function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2000